Skip to main content

VSLAM in Humanoid Robotics

Visual Simultaneous Localization and Mapping (VSLAM) is a critical capability for humanoid robots to navigate and understand their environment. VSLAM allows robots to build a map of an unknown environment while simultaneously tracking their position within that map using visual sensors.

Introduction to VSLAM

VSLAM is essential for humanoid robots because:

  • It enables autonomous navigation in unknown environments
  • It provides spatial understanding without pre-existing maps
  • It uses commonly available visual sensors (cameras)
  • It allows for drift correction through loop closure detection

VSLAM Pipeline Components

Feature Detection and Tracking

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
import numpy as np
from collections import deque

class FeatureTracker(Node):
    def __init__(self):
        super().__init__('feature_tracker')
        
        # Subscribe to camera feed
        self.image_sub = self.create_subscription(
            Image,
            '/camera/image',
            self.image_callback,
            10
        )
        
        self.bridge = CvBridge()
        
        # Feature tracking parameters
        self.feature_params = dict(
            maxCorners=100,
            qualityLevel=0.3,
            minDistance=7,
            blockSize=7
        )
        
        self.lk_params = dict(
            winSize=(15, 15),
            maxLevel=2,
            criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)
        )
        
        # Store previous frame and features
        self.prev_gray = None
        self.prev_features = None
        self.track_len = 10
        self.tracks = deque(maxlen=self.track_len)
        
        self.get_logger().info('Feature Tracker initialized')

    def image_callback(self, msg):
        """Process incoming images to track features"""
        # Convert ROS Image to OpenCV
        curr_frame = self.bridge.imgmsg_to_cv2(msg, desired_encoding='mono8')
        
        if self.prev_gray is None:
            # Initialize first frame
            self.prev_gray = curr_frame
            self.prev_features = cv2.goodFeaturesToTrack(
                self.prev_gray,
                **self.feature_params
            )
            return
        
        # Calculate optical flow
        curr_features, status, err = cv2.calcOpticalFlowPyrLK(
            self.prev_gray, curr_frame, 
            self.prev_features, None, 
            **self.lk_params
        )
        
        # Filter good features
        good_curr = curr_features[status == 1]
        good_prev = self.prev_features[status == 1]
        
        # Add to tracks
        for i, (curr, prev) in enumerate(zip(good_curr, good_prev)):
            self.tracks.append((curr, prev))
        
        # Update for next iteration
        self.prev_gray = curr_frame.copy()
        self.prev_features = good_curr.reshape(-1, 1, 2)

Pose Estimation

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import PoseStamped, TwistStamped
from std_msgs.msg import Float32
import numpy as np
from scipy.spatial.transform import Rotation as R

class PoseEstimator(Node):
    def __init__(self):
        super().__init__('pose_estimator')
        
        # Publisher for pose estimates
        self.pose_pub = self.create_publisher(PoseStamped, '/vslam/pose', 10)
        self.twist_pub = self.create_publisher(TwistStamped, '/vslam/twist', 10)
        
        # Initialize pose
        self.current_pose = np.eye(4)  # 4x4 homogeneous transformation matrix
        self.prev_features = None
        self.camera_matrix = np.array([[554.256, 0.0, 320.5],
                                       [0.0, 554.256, 240.5],
                                       [0.0, 0.0, 1.0]])
        
        # For velocity estimation
        self.prev_time = None
        self.prev_position = np.array([0.0, 0.0, 0.0])
        
        self.get_logger().info('Pose Estimator initialized')

    def estimate_pose(self, prev_points, curr_points):
        """Estimate relative pose change from tracked features"""
        if len(prev_points) < 8 or len(curr_points) < 8:
            return np.eye(4)  # Return identity if not enough points
        
        # Estimate essential matrix
        E, mask = cv2.findEssentialMat(
            curr_points, prev_points, 
            self.camera_matrix, 
            method=cv2.RANSAC, 
            prob=0.999, 
            threshold=1.0
        )
        
        if E is None or len(E) == 0:
            return np.eye(4)
        
        # Decompose essential matrix to get rotation and translation
        _, R, t, _ = cv2.recoverPose(E, curr_points, prev_points, self.camera_matrix)
        
        # Create transformation matrix
        transformation = np.eye(4)
        transformation[:3, :3] = R
        transformation[:3, 3] = t.flatten()
        
        return transformation

    def update_pose(self, relative_transform):
        """Update the global pose with relative transformation"""
        # Apply the relative transformation to current pose
        self.current_pose = np.dot(self.current_pose, relative_transform)
        
        # Publish the updated pose
        self.publish_pose()

    def publish_pose(self):
        """Publish the current pose"""
        pose_msg = PoseStamped()
        pose_msg.header.stamp = self.get_clock().now().to_msg()
        pose_msg.header.frame_id = 'map'
        
        # Extract position
        position = self.current_pose[:3, 3]
        pose_msg.pose.position.x = float(position[0])
        pose_msg.pose.position.y = float(position[1])
        pose_msg.pose.position.z = float(position[2])
        
        # Extract orientation (convert rotation matrix to quaternion)
        rotation_matrix = self.current_pose[:3, :3]
        r = R.from_matrix(rotation_matrix)
        quat = r.as_quat()
        
        pose_msg.pose.orientation.x = float(quat[0])
        pose_msg.pose.orientation.y = float(quat[1])
        pose_msg.pose.orientation.z = float(quat[2])
        pose_msg.pose.orientation.w = float(quat[3])
        
        self.pose_pub.publish(pose_msg)
        
        # Also publish velocity if we have previous data
        self.publish_velocity()

    def publish_velocity(self):
        """Publish estimated linear velocity"""
        current_time = self.get_clock().now()
        current_position = self.current_pose[:3, 3]
        
        if self.prev_time is not None:
            dt = (current_time - self.prev_time).nanoseconds / 1e9
            if dt > 0:
                velocity = (current_position - self.prev_position) / dt
                
                twist_msg = TwistStamped()
                twist_msg.header.stamp = current_time.to_msg()
                twist_msg.header.frame_id = 'base_link'
                twist_msg.twist.linear.x = float(velocity[0])
                twist_msg.twist.linear.y = float(velocity[1])
                twist_msg.twist.linear.z = float(velocity[2])
                
                self.twist_pub.publish(twist_msg)
        
        self.prev_time = current_time
        self.prev_position = current_position

Mapping Component

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import PointCloud2
from geometry_msgs.msg import PointStamped
from visualization_msgs.msg import MarkerArray
from std_msgs.msg import Header
import numpy as np
import struct

class VSLAMMap(Node):
    def __init__(self):
        super().__init__('vslam_map')
        
        # Publisher for map representation
        self.map_pub = self.create_publisher(PointCloud2, '/vslam/map', 10)
        self.landmarks_pub = self.create_publisher(MarkerArray, '/vslam/landmarks', 10)
        
        # Store landmarks
        self.landmarks = {}
        self.landmark_id_counter = 0
        
        # For map management
        self.map_resolution = 0.1  # meters
        self.max_map_size = 100.0  # meters
        
        self.get_logger().info('VSLAM Map initialized')

    def add_landmark(self, position, descriptor=None):
        """Add a new landmark to the map"""
        landmark_id = self.landmark_id_counter
        self.landmark_id_counter += 1
        
        # Store landmark with its properties
        self.landmarks[landmark_id] = {
            'position': np.array(position),
            'descriptor': descriptor,
            'observations': 1,
            'first_observed': self.get_clock().now().nanoseconds
        }
        
        # Publish updated map
        self.publish_map()
        
        return landmark_id

    def update_landmark(self, landmark_id, new_position, weight=1.0):
        """Update an existing landmark position"""
        if landmark_id in self.landmarks:
            # Weighted average update
            old_pos = self.landmarks[landmark_id]['position']
            self.landmarks[landmark_id]['position'] = (
                (self.landmarks[landmark_id]['position'] * self.landmarks[landmark_id]['observations'] + 
                 new_position * weight) / 
                (self.landmarks[landmark_id]['observations'] + weight)
            )
            self.landmarks[landmark_id]['observations'] += 1
            
            # Publish updated map
            self.publish_map()

    def publish_map(self):
        """Publish the current map as a point cloud"""
        # Create PointCloud2 message
        header = Header()
        header.stamp = self.get_clock().now().to_msg()
        header.frame_id = 'map'
        
        # Prepare point cloud data
        points = []
        for landmark in self.landmarks.values():
            pos = landmark['position']
            points.append([pos[0], pos[1], pos[2]])
        
        # Create the PointCloud2 message structure
        # This is a simplified version - in a real implementation, 
        # you would use the sensor_msgs_py package or similar
        if points:
            # Create point cloud in the format needed
            cloud_points = np.array(points, dtype=np.float32)
            
            # In a full implementation, we would properly format 
            # the PointCloud2 message here
            pass

    def get_nearby_landmarks(self, position, radius=2.0):
        """Get landmarks within a specified radius of the given position"""
        nearby = []
        for landmark_id, landmark in self.landmarks.items():
            dist = np.linalg.norm(landmark['position'] - position)
            if dist <= radius:
                nearby.append((landmark_id, landmark))
        return nearby

    def cleanup_old_landmarks(self):
        """Remove landmarks that haven't been observed recently"""
        current_time = self.get_clock().now().nanoseconds
        threshold_time = 60e9  # 60 seconds in nanoseconds
        
        # Remove landmarks not observed for more than threshold_time
        for landmark_id, landmark in list(self.landmarks.items()):
            if current_time - landmark['first_observed'] > threshold_time:
                # Additional check: if observed less than 3 times, remove it
                if landmark['observations'] < 3:
                    del self.landmarks[landmark_id]

Safety-First VSLAM Implementation

For humanoid robotics applications, VSLAM must implement safety considerations:

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from std_msgs.msg import Bool
from sensor_msgs.msg import Image
from geometry_msgs.msg import Twist

class SafeVSLAM(Node):
    def __init__(self):
        super().__init__('safe_vslam')
        
        # Subscribe to camera and safety topics
        self.image_sub = self.create_subscription(
            Image, 
            '/camera/image', 
            self.image_callback, 
            10
        )
        
        # Publisher for movement commands with safety
        self.cmd_pub = self.create_publisher(Twist, '/cmd_vel', 10)
        self.emergency_stop_pub = self.create_publisher(Bool, '/emergency_stop', 10)
        
        # Initialize components
        self.feature_tracker = FeatureTracker()
        self.pose_estimator = PoseEstimator()
        self.map_builder = VSLAMMap()
        
        # Safety parameters
        self.position_uncertainty_threshold = 0.5  # meters
        self.min_feature_count = 10
        self.max_velocity = 0.3  # m/s
        
        self.get_logger().info('Safe VSLAM system initialized')

    def image_callback(self, msg):
        """Process image with safety considerations"""
        # Extract features
        features = self.extract_features(msg)
        
        # Check if we have enough features for reliable localization
        if len(features) < self.min_feature_count:
            self.get_logger().warn(f'Not enough features for reliable localization: {len(features)}')
            
            # Consider whether to stop or reduce speed
            if len(features) < self.min_feature_count / 2:
                self.slow_down_or_stop()
        
        # Perform pose estimation
        if self.pose_estimator.prev_features is not None:
            # Estimate pose change
            relative_transform = self.pose_estimator.estimate_pose(
                self.pose_estimator.prev_features, features
            )
            
            # Check if pose uncertainty is too high
            uncertainty = self.estimate_pose_uncertainty(relative_transform)
            if uncertainty > self.position_uncertainty_threshold:
                self.get_logger().warn(f'High pose uncertainty: {uncertainty:.2f}m')
                self.slow_down_or_stop()
            else:
                # Update pose normally
                self.pose_estimator.update_pose(relative_transform)
        
        # Update feature tracker
        self.feature_tracker.update_features(msg, features)

    def estimate_pose_uncertainty(self, transform):
        """Estimate the uncertainty of the pose estimate"""
        # Calculate uncertainty based on number of features and their distribution
        # This is a simplified version - real implementation would be more complex
        rotation = transform[:3, :3]
        translation = transform[:3, 3]
        
        # Higher uncertainty if transformation has high rotation or translation
        # relative to what we expect for the robot's movement
        rotation_angle = np.arccos(np.clip((np.trace(rotation) - 1) / 2, -1, 1))
        translation_norm = np.linalg.norm(translation)
        
        # Combine rotation and translation uncertainties
        uncertainty = rotation_angle + translation_norm
        return uncertainty

    def slow_down_or_stop(self):
        """Slow down or stop robot movement for safety"""
        stop_cmd = Twist()
        self.cmd_pub.publish(stop_cmd)
        self.get_logger().warn('Robot movement stopped for safety')

AI Transparency in VSLAM

All VSLAM decisions must be logged for transparency and auditability:

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
import json
import datetime

class VSLAMTransparencyLogger(Node):
    def __init__(self):
        super().__init__('vslam_transparency_logger')
        
        # Publisher for transparency logs
        self.log_pub = self.create_publisher(String, '/vslam_transparency_log', 10)
        
        # Initialize log storage
        self.decision_log = []
        
        self.get_logger().info('VSLAM Transparency Logger initialized')

    def log_tracking_decision(self, frame_id, feature_count, tracking_quality):
        """Log a tracking decision for transparency"""
        timestamp = self.get_clock().now().to_msg()
        
        log_entry = {
            'timestamp': timestamp.sec + timestamp.nanosec / 1e9,
            'decision_type': 'feature_tracking',
            'frame_id': frame_id,
            'feature_count': feature_count,
            'tracking_quality': tracking_quality,
            'reasoning': f'Tracked {feature_count} features with quality {tracking_quality}',
            'node_id': self.get_name()
        }
        
        # Store in memory
        self.decision_log.append(log_entry)
        
        # Publish to topic for external logging
        log_msg = String()
        log_msg.data = json.dumps(log_entry)
        self.log_pub.publish(log_msg)
        
        self.get_logger().info(f'Logged tracking decision: {feature_count} features, quality {tracking_quality}')

    def log_pose_decision(self, position, rotation, uncertainty):
        """Log a pose estimation decision"""
        timestamp = self.get_clock().now().to_msg()
        
        log_entry = {
            'timestamp': timestamp.sec + timestamp.nanosec / 1e9,
            'decision_type': 'pose_estimation',
            'position': position.tolist() if isinstance(position, np.ndarray) else position,
            'rotation': rotation.tolist() if isinstance(rotation, np.ndarray) else rotation,
            'uncertainty': uncertainty,
            'reasoning': f'Estimated pose with uncertainty {uncertainty:.3f}',
            'node_id': self.get_name()
        }
        
        # Store in memory
        self.decision_log.append(log_entry)
        
        # Publish to topic for external logging
        log_msg = String()
        log_msg.data = json.dumps(log_entry)
        self.log_pub.publish(log_msg)
        
        self.get_logger().info(f'Logged pose decision with uncertainty {uncertainty:.3f}')

VSLAM systems for humanoid robots must balance accuracy, computational efficiency, and safety. The implementation should include proper error handling, uncertainty estimation, and fallback strategies to ensure safe robot operation in all conditions. Transparency in algorithm decisions is essential for debugging and validation purposes.

💬