Skip to main content

AI Transparency in Humanoid Robotics

AI transparency is a fundamental requirement in humanoid robotics systems, ensuring that decision-making processes are interpretable and traceable. This transparency is essential for debugging, validation, and ethical compliance of autonomous behaviors, as mandated by the Physical-AI-Humanoid-Robotic Constitution.

The Need for AI Transparency

Humanoid robots operate in close proximity to humans, making their decision-making processes a matter of safety and trust. Transparency in AI systems ensures:

  • Auditability: The ability to trace how decisions were made
  • Explainability: Understanding why a particular action was taken
  • Accountability: Clear attribution of actions to specific AI components
  • Safety: The ability to understand and predict AI behavior

Transparency Architecture

Logging Framework

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
import json
import datetime
from enum import Enum

class DecisionType(Enum):
    PERCEPTION = "perception"
    NAVIGATION = "navigation"
    MANIPULATION = "manipulation"
    INTERACTION = "interaction"
    SAFETY = "safety"

class TransparencyLogger(Node):
    def __init__(self):
        super().__init__('transparency_logger')
        
        # Publisher for transparency logs
        self.log_pub = self.create_publisher(String, '/ai_transparency_log', 10)
        
        # Initialize log storage
        self.decision_log = []
        self.log_file = open('/logs/ai_decisions.json', 'a')
        
        self.get_logger().info('AI Transparency Logger initialized')

    def log_decision(self, decision_type, decision_data, reasoning, node_id=None):
        """Log an AI decision with reasoning and context for transparency"""
        timestamp = self.get_clock().now().to_msg()
        
        log_entry = {
            'timestamp': timestamp.sec + timestamp.nanosec / 1e9,
            'decision_type': decision_type.value if isinstance(decision_type, DecisionType) else decision_type,
            'decision_data': decision_data,
            'reasoning': reasoning,
            'node_id': node_id or self.get_name(),
            'decision_id': len(self.decision_log)
        }
        
        # Store in memory
        self.decision_log.append(log_entry)
        
        # Write to persistent log
        self.log_file.write(json.dumps(log_entry) + '\n')
        self.log_file.flush()
        
        # Publish to topic for external monitoring
        log_msg = String()
        log_msg.data = json.dumps(log_entry)
        self.log_pub.publish(log_msg)
        
        self.get_logger().info(f'Logged decision: {decision_type.value}')

    def log_perception_decision(self, objects_detected, confidence_threshold, action_taken):
        """Log perception system decisions"""
        decision_data = {
            'objects_detected': objects_detected,
            'confidence_threshold': confidence_threshold,
            'action_taken': action_taken
        }
        
        reasoning = f'Detected {len(objects_detected)} objects with confidence above {confidence_threshold}, taking action: {action_taken}'
        
        self.log_decision(
            DecisionType.PERCEPTION,
            decision_data,
            reasoning
        )

    def log_navigation_decision(self, goal_pose, path, safety_check_passed):
        """Log navigation system decisions"""
        decision_data = {
            'goal_pose': goal_pose,
            'path': path,
            'safety_check_passed': safety_check_passed
        }
        
        reasoning = f'Calculated path to goal with safety check {"PASSED" if safety_check_passed else "FAILED"}'
        
        self.log_decision(
            DecisionType.NAVIGATION,
            decision_data,
            reasoning
        )

    def get_decision_history(self, decision_type=None, time_window=None):
        """Retrieve decision history with optional filters"""
        if decision_type:
            if isinstance(decision_type, DecisionType):
                decision_type = decision_type.value
            filtered = [entry for entry in self.decision_log 
                       if entry['decision_type'] == decision_type]
        else:
            filtered = self.decision_log[:]
        
        if time_window:
            current_time = self.get_clock().now().seconds_nanoseconds()[0]
            filtered = [entry for entry in filtered 
                       if current_time - entry['timestamp'] <= time_window]
        
        return filtered

    def __del__(self):
        """Clean up log file"""
        if hasattr(self, 'log_file') and self.log_file:
            self.log_file.close()

Decision Explanation System

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
from ai_transparency_msgs.msg import DecisionExplanation  # hypothetical message type

class DecisionExplainer(Node):
    def __init__(self):
        super().__init__('decision_explainer')
        
        # Publisher for explanations
        self.explanation_pub = self.create_publisher(DecisionExplanation, '/decision_explanation', 10)
        
        # Subscription to request explanations for specific decisions
        self.request_sub = self.create_subscription(
            String,
            '/request_explanation',
            self.request_callback,
            10
        )
        
        self.transparency_logger = TransparencyLogger()
        
        self.get_logger().info('Decision Explainer initialized')

    def request_callback(self, msg):
        """Handle request for explanation of a specific decision"""
        try:
            # Parse the request message (assumes it contains decision ID)
            request_data = json.loads(msg.data)
            decision_id = request_data.get('decision_id')
            
            # Retrieve the decision from logger
            all_decisions = self.transparency_logger.decision_log
            target_decision = next((d for d in all_decisions if d['decision_id'] == decision_id), None)
            
            if target_decision:
                explanation = self.generate_explanation(target_decision)
                
                # Publish the explanation
                explanation_msg = DecisionExplanation()
                explanation_msg.decision_id = decision_id
                explanation_msg.explanation = explanation
                explanation_msg.confidence_score = 0.95  # Placeholder
                self.explanation_pub.publish(explanation_msg)
            else:
                self.get_logger().error(f'Decision ID {decision_id} not found')
        except Exception as e:
            self.get_logger().error(f'Error processing explanation request: {e}')

    def generate_explanation(self, decision):
        """Generate a human-readable explanation of a decision"""
        decision_type = decision['decision_type']
        decision_data = decision['decision_data']
        reasoning = decision['reasoning']
        
        explanation = f"Decision Type: {decision_type}\n"
        explanation += f"Reasoning: {reasoning}\n"
        explanation += f"Time: {datetime.datetime.fromtimestamp(decision['timestamp'])}\n"
        explanation += f"Node: {decision['node_id']}\n"
        explanation += f"Data: {json.dumps(decision_data, indent=2)}"
        
        return explanation

Transparent Perception Systems

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image, LaserScan
from vision_msgs.msg import Detection2DArray
from geometry_msgs.msg import PointStamped
import numpy as np
from ai_transparency.logger import TransparencyLogger, DecisionType

class TransparentPerceptionNode(Node):
    def __init__(self):
        super().__init__('transparent_perception')
        
        # Publishers and subscribers
        self.image_sub = self.create_subscription(
            Image,
            '/camera/image',
            self.image_callback,
            10
        )
        
        self.scan_sub = self.create_subscription(
            LaserScan,
            '/scan',
            self.scan_callback,
            10
        )
        
        self.detection_pub = self.create_publisher(Detection2DArray, '/detections', 10)
        
        # Initialize transparency logger
        self.transparency_logger = TransparencyLogger(self)
        
        # Perception parameters
        self.detection_threshold = 0.5
        self.min_confidence = 0.7
        
        self.get_logger().info('Transparent Perception Node initialized')

    def image_callback(self, msg):
        """Process image with transparency logging"""
        try:
            # Perform object detection
            detections = self.perform_detection(msg)
            
            # Filter by confidence
            high_conf_detections = [d for d in detections if d.confidence > self.min_confidence]
            
            # Log the perception decision
            decision_data = {
                'input_image_id': msg.header.stamp.sec,
                'total_detections': len(detections),
                'high_confidence_detections': len(high_conf_detections),
                'confidence_threshold': self.min_confidence
            }
            
            reasoning = f'Detected {len(detections)} objects, {len(high_conf_detections)} with confidence > {self.min_confidence}'
            
            self.transparency_logger.log_decision(
                DecisionType.PERCEPTION,
                decision_data,
                reasoning
            )
            
            # Publish detections
            detection_msg = Detection2DArray()
            detection_msg.header = msg.header
            detection_msg.detections = high_conf_detections
            self.detection_pub.publish(detection_msg)
            
        except Exception as e:
            self.get_logger().error(f'Error in perception: {e}')
            
            # Log the error decision
            decision_data = {
                'input_image_id': msg.header.stamp.sec,
                'error': str(e)
            }
            
            self.transparency_logger.log_decision(
                DecisionType.PERCEPTION,
                decision_data,
                f'Perception failed with error: {e}'
            )

    def scan_callback(self, msg):
        """Process laser scan data with transparency"""
        try:
            # Process scan for obstacles
            obstacles = self.detect_obstacles_from_scan(msg)
            
            # Log the decision
            decision_data = {
                'scan_id': msg.header.stamp.sec,
                'obstacle_count': len(obstacles),
                'min_distance': min([o.distance for o in obstacles]) if obstacles else float('inf')
            }
            
            reasoning = f'Detected {len(obstacles)} obstacles, minimum distance: {decision_data["min_distance"]:.2f}m'
            
            self.transparency_logger.log_decision(
                DecisionType.PERCEPTION,
                decision_data,
                reasoning
            )
            
        except Exception as e:
            self.get_logger().error(f'Error processing scan: {e}')
            
            decision_data = {
                'scan_id': msg.header.stamp.sec,
                'error': str(e)
            }
            
            self.transparency_logger.log_decision(
                DecisionType.PERCEPTION,
                decision_data,
                f'Scan processing failed with error: {e}'
            )

    def perform_detection(self, image_msg):
        """Perform object detection (simplified placeholder)"""
        # In a real implementation, this would run the actual detection algorithm
        return []
        
    def detect_obstacles_from_scan(self, scan_msg):
        """Detect obstacles from laser scan (simplified placeholder)"""
        # In a real implementation, this would analyze the scan data
        return []

Transparent Navigation System

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from nav2_msgs.action import NavigateToPose
from rclpy.action import ActionClient
from geometry_msgs.msg import PoseStamped, Point
from visualization_msgs.msg import Marker
from ai_transparency.logger import TransparencyLogger, DecisionType

class TransparentNavigation(Node):
    def __init__(self):
        super().__init__('transparent_navigation')
        
        # Action client for navigation
        self.nav_to_pose_client = ActionClient(
            self,
            NavigateToPose,
            'navigate_to_pose'
        )
        
        # Initialize transparency logger
        self.transparency_logger = TransparencyLogger(self)
        
        # Initialize safety systems
        self.safety_checker = SafetyValidator(self)
        
        self.get_logger().info('Transparent Navigation initialized')

    def navigate_to_pose_with_explanation(self, x, y, theta):
        """Navigate to pose with full transparency"""
        goal_pose = self.create_pose_stamped(x, y, theta)
        
        # Validate safety before navigation
        is_safe, safety_reason = self.safety_checker.validate_navigation(goal_pose)
        
        if not is_safe:
            self.get_logger().error(f'Navigation unsafe: {safety_reason}')
            
            # Log safety decision
            decision_data = {
                'goal_pose': {'x': x, 'y': y, 'theta': theta},
                'safety_check': 'FAILED',
                'reason': safety_reason
            }
            
            self.transparency_logger.log_decision(
                DecisionType.SAFETY,
                decision_data,
                f'Navigation to ({x}, {y}) blocked due to safety concerns: {safety_reason}'
            )
            
            return False
        
        # Plan path and check for obstacles
        path = self.plan_path(goal_pose)
        obstacle_check = self.check_path_for_obstacles(path)
        
        # Log the navigation decision
        decision_data = {
            'goal_pose': {'x': x, 'y': y, 'theta': theta},
            'path_length': len(path),
            'obstacles_detected': obstacle_check['obstacles'],
            'safety_check_passed': is_safe
        }
        
        reasoning = f'Planning to navigate to ({x}, {y}), path length: {len(path)}, obstacles: {obstacle_check["obstacles"]}'
        
        self.transparency_logger.log_decision(
            DecisionType.NAVIGATION,
            decision_data,
            reasoning
        )
        
        # Proceed with navigation if path is clear
        if not obstacle_check['obstacles']:
            return self.send_navigation_goal(goal_pose)
        else:
            self.get_logger().warn('Obstacles detected in path, replanning or aborting')
            return False

    def send_navigation_goal(self, pose_stamped):
        """Send navigation goal with transparency logging"""
        goal_msg = NavigateToPose.Goal()
        goal_msg.pose = pose_stamped
        
        if not self.nav_to_pose_client.wait_for_server(timeout_sec=5.0):
            self.get_logger().error('Navigation action server not available')
            return False
        
        # Log the actual navigation command
        decision_data = {
            'goal': pose_stamped.pose
        }
        
        self.transparency_logger.log_decision(
            DecisionType.NAVIGATION,
            decision_data,
            f'Sending navigation command to ({pose_stamped.pose.position.x}, {pose_stamped.pose.position.y})'
        )
        
        future = self.nav_to_pose_client.send_goal_async(
            goal_msg,
            feedback_callback=self.nav_feedback_callback
        )
        
        future.add_done_callback(self.nav_result_callback)
        return True

    def nav_feedback_callback(self, feedback):
        """Handle navigation feedback with logging"""
        current_pose = feedback.feedback.current_pose.pose
        distance_remaining = feedback.feedback.distance_remaining
        
        decision_data = {
            'current_position': {
                'x': current_pose.position.x,
                'y': current_pose.position.y
            },
            'distance_remaining': distance_remaining
        }
        
        reasoning = f'Navigation in progress, {distance_remaining:.2f}m remaining'
        
        self.transparency_logger.log_decision(
            DecisionType.NAVIGATION,
            decision_data,
            reasoning
        )

    def nav_result_callback(self, future):
        """Handle navigation result with logging"""
        result = future.result().result
        
        decision_data = {
            'success': result,
            'result_code': result.result if hasattr(result, 'result') else 'unknown'
        }
        
        status = 'SUCCESS' if result else 'FAILED'
        reasoning = f'Navigation completed with status: {status}'
        
        self.transparency_logger.log_decision(
            DecisionType.NAVIGATION,
            decision_data,
            reasoning
        )

    def create_pose_stamped(self, x, y, theta):
        """Create a PoseStamped message"""
        pose_stamped = PoseStamped()
        pose_stamped.header.stamp = self.get_clock().now().to_msg()
        pose_stamped.header.frame_id = 'map'
        pose_stamped.pose.position.x = float(x)
        pose_stamped.pose.position.y = float(y)
        pose_stamped.pose.position.z = 0.0
        
        # Convert theta to quaternion
        import math
        pose_stamped.pose.orientation.z = math.sin(theta / 2.0)
        pose_stamped.pose.orientation.w = math.cos(theta / 2.0)
        
        return pose_stamped

    def plan_path(self, goal_pose):
        """Plan a path to the goal (simplified placeholder)"""
        # In a real implementation, this would use NavFn, A*, or other path planning
        return [goal_pose.pose.position]  # Simplified

    def check_path_for_obstacles(self, path):
        """Check the planned path for obstacles (simplified placeholder)"""
        # In a real implementation, this would check against costmap
        return {'obstacles': False, 'obstacle_positions': []}

Safety Validator with Transparency

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Pose
from ai_transparency.logger import TransparencyLogger, DecisionType

class SafetyValidator(Node):
    def __init__(self, parent_node):
        super().__init__('safety_validator')
        
        # Store reference to parent node for logging
        self.parent_node = parent_node
        self.transparency_logger = TransparencyLogger(parent_node)
        
        # Initialize safety parameters
        self.min_distance_to_human = 0.5  # meters
        self.max_navigation_speed = 0.5  # m/s
        self.emergency_stop_enabled = True
        
        self.get_logger().info('Safety Validator initialized')

    def validate_navigation(self, goal_pose):
        """Validate if navigation to goal pose is safe"""
        try:
            # Check if goal is in human safety zone
            is_in_safe_zone = self.check_human_proximity(goal_pose.pose.position)
            
            if not is_in_safe_zone:
                return False, "Goal is too close to humans"
            
            # Check if path is obstacle-free
            path_clear = self.check_path_clear(goal_pose)
            
            if not path_clear:
                return False, "Path to goal has obstacles"
            
            # Check if goal is in designated safe areas
            is_in_safe_area = self.check_safe_area(goal_pose.pose.position)
            
            if not is_in_safe_area:
                return False, "Goal is in restricted area"
            
            # Log successful safety check
            decision_data = {
                'goal_position': {
                    'x': goal_pose.pose.position.x,
                    'y': goal_pose.pose.position.y
                },
                'human_proximity_check': True,
                'path_clear_check': True,
                'safe_area_check': True
            }
            
            self.transparency_logger.log_decision(
                DecisionType.SAFETY,
                decision_data,
                'Navigation safety check passed for all criteria'
            )
            
            return True, "All safety checks passed"
            
        except Exception as e:
            self.get_logger().error(f'Safety validation error: {e}')
            
            # Log the error
            decision_data = {
                'goal_pose': goal_pose,
                'error': str(e)
            }
            
            self.transparency_logger.log_decision(
                DecisionType.SAFETY,
                decision_data,
                f'Safety validation failed with error: {e}'
            )
            
            return False, f"Validation error: {e}"

    def check_human_proximity(self, position):
        """Check if position is near humans"""
        # In a real implementation, this would check against human tracker
        # For this example, we'll just return True (safe)
        return True

    def check_path_clear(self, goal_pose):
        """Check if path to goal is clear of obstacles"""
        # In a real implementation, this would check the costmap
        # For this example, we'll just return True (clear)
        return True

    def check_safe_area(self, position):
        """Check if position is in a safe area"""
        # In a real implementation, this would check against a safe area map
        # For this example, we'll just return True (safe)
        return True

Human-in-the-Loop Override System

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from std_msgs.msg import Bool, String
from ai_transparency.logger import TransparencyLogger, DecisionType

class HumanOverrideSystem(Node):
    def __init__(self):
        super().__init__('human_override_system')
        
        # Publishers for override control
        self.emergency_stop_pub = self.create_publisher(Bool, '/emergency_stop', 10)
        self.override_status_pub = self.create_publisher(String, '/override_status', 10)
        
        # Subscription for human override commands
        self.override_sub = self.create_subscription(
            String,
            '/human_override',
            self.override_callback,
            10
        )
        
        # Initialize transparency logger
        self.transparency_logger = TransparencyLogger(self)
        
        # Override state
        self.override_active = False
        self.override_reason = ""
        
        self.get_logger().info('Human Override System initialized')

    def override_callback(self, msg):
        """Handle human override commands"""
        try:
            command_data = json.loads(msg.data)
            command = command_data.get('command')
            reason = command_data.get('reason', 'Manual override')
            
            if command == 'EMERGENCY_STOP':
                self.activate_emergency_stop(reason)
            elif command == 'RESUME':
                self.deactivate_override(reason)
            elif command == 'PAUSE':
                self.pause_operations(reason)
            else:
                self.get_logger().warn(f'Unknown override command: {command}')
                return
                
            # Log the override decision
            decision_data = {
                'command': command,
                'reason': reason,
                'timestamp': self.get_clock().now().seconds_nanoseconds()[0]
            }
            
            self.transparency_logger.log_decision(
                DecisionType.INTERACTION,
                decision_data,
                f'Human override executed: {command} - {reason}'
            )
                
        except Exception as e:
            self.get_logger().error(f'Error processing override: {e}')
            
            decision_data = {
                'raw_command': msg.data,
                'error': str(e)
            }
            
            self.transparency_logger.log_decision(
                DecisionType.INTERACTION,
                decision_data,
                f'Override processing failed with error: {e}'
            )

    def activate_emergency_stop(self, reason):
        """Activate emergency stop with human override"""
        self.override_active = True
        self.override_reason = reason
        
        stop_msg = Bool()
        stop_msg.data = True
        self.emergency_stop_pub.publish(stop_msg)
        
        status_msg = String()
        status_msg.data = f'EMERGENCY_STOP: {reason}'
        self.override_status_pub.publish(status_msg)
        
        self.get_logger().error(f'EMERGENCY STOP ACTIVATED: {reason}')

    def deactivate_override(self, reason):
        """Deactivate override with human confirmation"""
        self.override_active = False
        self.override_reason = ""
        
        stop_msg = Bool()
        stop_msg.data = False
        self.emergency_stop_pub.publish(stop_msg)
        
        status_msg = String()
        status_msg.data = f'RESUMED: {reason}'
        self.override_status_pub.publish(status_msg)
        
        self.get_logger().info(f'Operations resumed: {reason}')

    def pause_operations(self, reason):
        """Pause operations without full emergency stop"""
        # Implementation would send pause commands to various systems
        status_msg = String()
        status_msg.data = f'PAUSED: {reason}'
        self.override_status_pub.publish(status_msg)
        
        self.get_logger().info(f'Operations paused: {reason}')

AI transparency in humanoid robotics is not just a nice-to-have feature—it's a constitutional requirement for safe and ethical operation. By implementing comprehensive logging, explanation systems, and human oversight capabilities, we ensure that these complex AI systems remain accountable and trustworthy in human environments. The transparency mechanisms described in this section provide the foundation for building humanoid robots that operate safely and ethically alongside humans.

💬